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ABSTRACT:  Typical ASTM fracture testing determines J-integral resistance (J-R) curve or

fracture toughness (JIC) based on specimens with high constraint geometry such as those

specified in ASTM E1737-96.  A three-term asymptotic solution with two parameters J and A2 (a

constraint parameter) has been developed for characterizing the constraint effect of various

geometries. The present paper extends the J-A2 characterization of a stationary crack tip to the

regime of stable crack growth.  Similar to the concept of J-controlled crack growth, the J-A2

description can be approximately used to characterize ductile crack growth under certain amount

of crack extension.  The region of J-A2 controlled crack growth is much larger than that

controlled by J-integral alone.  From the relationships between A2 and the test dada, JIC and

tearing modulus (TR), the coefficients used to define a J-R curve can be determined.  For non-

standard specimens or actual structures, once the constraint parameter A2 is determined, the J-R

curves appropriate for these geometries can then be obtained.  A procedure of transferring J-R

curves determined from the standard ASTM procedure to non-standard specimens or flawed

structures is outlined in the paper.

KEYWORDS: constraint effect, fracture toughness, tearing modulus, J-R curve, J-A2,

asymptotic solution, J-controlled crack growth
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The ductile failure of engineering materials is characterized by the fracture initiation

toughness JIC and the subsequent fracture resistance (J-R) curve. The standard J-R curve shows

that J-integral is a function of crack extension and is size-independent within a J-controlled

growth region.  However, for non-standard, low constraint specimens or flawed structures, the J-

R curve may be size and geometry dependent when J-dominance is lost.

The American Society for Testing Materials (ASTM) standardized the specimen geometries

for measuring JIC and J-R curves. These specimens are typically high crack-tip constrained, such

as the deeply cracked three-point bend (3PB) and the compact tension (CT) specimens which are

specified in the ASTM Standard Test Method for J-Integral Characterization of Fracture

toughness (E 1737).

Using the ASTM 710 Grade A steel, Hancock et al. [1] measured the fracture toughness JIC

and J-R curves for specimens of 3PB, 1CT, center-cracked panel (CCP), and surface cracked

panel (SCP).  Joyce and Link [2,3] presented the experiment data of ductile crack extension in

A533B, HY-100 and HY-80 steels with specimens of 3PB, 1CT, single edge-notched bend

(SENB), single edge-notched tensile (SENT), and double edge-cracked plate (DECP).  A variety

of crack tip constraints were achieved by using these specimens with different crack depths.  The

results did not show noticeable constraint effects on the crack growth initiation JIC, but a

significant difference in the slopes of the J-R curves was observed after some amount of crack

growth.  Similar results were obtained from ductile crack extension experiments of large-size

fracture specimens by Marschall et al. [4], Eisele et al. [5] and Roos et al. [6,7], Kordisch et al.

[8], Kelmm et al. [9], Henry et al. [10], and Haynes and Gangloff [11].

Roos et al. [6] showed the dependence of the J-R curve on specimen geometry and specimen

thickness for KS01 (22NiMoCr37) which is typically used in German nuclear industry.  Their
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result indicated that thicker specimen tends to lower the J-R curve.  Of particular interest is the J-

R curve from the SENT specimen.  It is substantially lower than that from the standard CT which

is widely used in fracture testing.  This implies that the standard ASTM CT specimen may not

always form the lower bound J-R curve among various specimen geometries.  Therefore, the

fracture properties that determined from the standard CT specimens might not safely represent

the tearing resistance of an actual structural component.  They also showed that in the case of

DENT specimens, deeper crack resulted in a lower J-R curve. The trend of all their test data is

consistent with a general rule in the constraint effect of fracture, that is, specimens with higher

constraint result in lower J-R curves.

In some nuclear applications such as the fracture testing for irradiated materials, the

specimen size is limited due to the test facility or the material availability.  Miniature or sub-

sized disk compact tension (DCT) specimens are often used (Alexander [12]).  Similar sub-sized

fracture specimens were also used, for instance, by Elliot et al., [13] and Yoon et al. [14], and in

ceramics materials used by Zhang and Ardell [15] and Gilbert et al [16].  The J-R curves of this

kind of specimens differed significantly from those of standard specimens because of the effect

of crack-tip constraints, while the values of initiation toughness JIC remained similar [12].

For a stationary crack in elastic-plastic materials, the effect of constraint on crack-tip fields

has been investigated extensively by Betegon and Hancock [17], O’Dowd and Shih [18,19],

Yang et al. [20,21] and Chao et al. [22], etc.  A review can be found in Chao and Zhu [23].  This

paper is focused on the J-A2 approach [20-22] which was derived from a rigorous asymptotic

solution and has been developed for a two-parameter fracture toughness testing.  With J being

the driving force and A2 a constraint parameter, this approach has been successfully used to

quantify the constraints of crack-tip fields for various geometry and loading configurations [22-
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25].  Note that the parameter A2 is almost independent of its position near the crack tip

(Nikishkov et al., [27]).

Similar to the concept of J-controlled crack growth, it is expected that J-A2 description can

approximately characterize the effect of crack-tip constraints on ductile crack growth, at least for

certain amount of crack extension.  As shown in Figure 1, the amount of J-A2 controlled crack

growth, ∆a, should be much larger than that controlled by J alone [23].

The objective of this paper is to extend the J-A2 characterization of crack tip fields to the

stable crack growth regime.  A procedure is outlined for transferring the J-R curves determined

from ASTM standard specimens to non-standard specimens or to flawed structures. Based on a

set of test data, a constraint modified J-R curve can be developed.  Using literature data [3], the

predicted J-R curve is demonstrated and is compared to the experimental J-R curve.

Theoretical Background

A Mode-I crack under plane strain condition is considered.  The elastic-plastic material

behavior is described by the Ramberg-Osgood power-law strain hardening curve where the

uniaxial strain ε is related to the uniaxial stress σ in simple tension by

ε
ε

σ
σ

α
σ
σ0 0 0

= +










n

(1)

where σ0  is a reference stress, ε σ0 0= / E  is a reference strain with E as the Young’s modulus,

(for actual elastic-plastic solids, σ0  and ε0  may be taken as the yield stress and the yield strain

of the material, respectively), α  is a material constant and n is a strain hardening exponent.  By

using the J2 deformation theory of plasticity, the uniaxial stress-strain relation (1) can be

generalized to
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where ν  is the Poisson’s ratio, δ ij  is the Kronecker delta, sij  is the deviatoric stress and σe  is the

von Mises effective stress defined as σe ij ijs s= 3 2/ .  The tensor summation convention has

been used.

J-A2 three-term asymptotic solution

Equation 2 is rewritten with respect to a polar coordinate system (r, θ ) with centered at the

crack tip.  The 0=θ  is along the uncracked ligament. Yang [28], Yang et al. [20,21]) and Chao

et al. [22] developed a three-term asymptotic crack-tip solution with only two parameters J and

A2 , in which J-integral can be used to quantify the magnitude of applied loading and A2

describes the crack tip constraints. The asymptotic fields of stress (σij), strain (εij) and

displacement (ui) can be expressed as
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where the angular functions ~ ( )σij
k , ~ ( )εij

k  and )(~ k
iu , the stress power exponents sk , and the

dimensionless integration constant In are only dependent of the hardening exponent n and

independent of the other material constants (i.e. α, ε0, σ0 ) and applied load. The characteristic

length, L, can be the crack length a, the specimen width W, the thickness B or an unity 1 cm.

The parameters A1 and s1 are given by the Hutchinson-Rice-Rosengren (HRR) field [29-31],
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I Ln
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1
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αε σ
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(6)

and s s s3 2 12= −   for n ≥ 3 .  The parameter A2 is undetermined and is related to the loading and

geometry of specimen.  Plane strain Mode I dimensionless functions ~ ( )σij
k , ~ ( )εij

k , )(~ k
iu , sk  and In

have been calculated and tabulated by Chao and Zhang [32].  When A2 0= , the three-term

asymptotic solutions (3) - (5) coincide with the HRR singular field.

Yang et al. [20] showed that the above three-term asymptotic solutions are the fully plastic or

the pure power-law solutions when the material is moderate or low strain hardening, n ≥ 3.

Comparing with the finite element results, it can be shown that the three-term solution can be

used to characterize the crack tip region well beyond r J/ ( / )σ0 5=  [20,21,23,26].  This

solution is valid under both small scale yielding and large scale yielding conditions, and is

independent of the crack tip constraint in any strain hardening materials.

Relationship between J and A2 under fully plastic conditions

For a pure power-law or fully plastic material, Ilyushin [33] showed that under

monotonically increasing load a solution to the boundary value problem has a simple form, that
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is, the stress is linearly related to the applied load P, the strain and the displacement are

proportional to P n.  Therefore,
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where the dimensionless $σij , $εij  and $ui  are functions of spatial coordinates xi and strain

hardening exponent n, and are independent of the applied load P.  The reference load, P0, can be

the limit load.  These expressions are the direct result of the homogenous nature of the equations

of equilibrium, compatibility, and the constitutive relation (2).

Since the integrand of the J-integral involves products of stress and displacement gradients,

from (7) - (9), Goldman and Hutchinson [34] showed that the fully plastic J-integral is

proportional to P n+1 :
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where a is a crack length, W is a specimen width.  The dimensionless function Ĵ  depends only

on the geometry size ratio a/W and strain hardening exponent n.

Substituting (10) into (7) - (9) and eliminating load term P/P0, one can obtain the relationship

between the field quantities and J-integral
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The above expressions are the unique forms of solutions for plane crack problems under fully

plastic deformation. Therefore, the three-term asymptotic solutions (3) - (5) must meet the

functional forms (11) - (13), or
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In equations (14) - (16), the exponents sk  and the constant In are only dependent of the hardening

exponent n.  The angular functions ~ ( )( )σ θij
k , ~ ( )( )ε θij

k and ~ ( )( )ui
k θ , the dimensionless quantities

$σij , $εij  and $ui  are the functions of polar coordinates (r, θ) and hardening exponent n.   The
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dimensionless function Ĵ  depends upon geometry size ratio a/W and hardening exponent n.

Moreover, all these quantities are independent of the other material properties (α, ε0, σ0) and the

level of the applied load or J-integral.  If the characteristic length L is independent of J, for

instance, L = a, W, B or 1 cm, one can conclude immediately from (14)-(16) that A2 is only the

function of strain hardening exponent n and geometry dimension (a, W, a/W), namely,

)  ,(
plasticfully  2 geometrynfA = (17)

As a result, under fully plastic deformation conditions the constraint parameter A2 in the three-

term solutions (3) - (5) are independent of the applied J for a given specimen and material.

Using a 3PB and SEN specimens, the finite element results [22,28] showed that A2 becomes

a constant value as the applied load (characterized by J) increases beyond about 1.2 times limit

load with the hardening exponent 4=n , 7 and 12.  Therefore, for a specimen fracturing at large-

scale yielding or near fully plastic condition, the value of A2 determined at ICJJ =  can be used

for loads ICJJ ≥ , as long as the growing crack tip is still within the J-A2 field and the elastic

unloading behind the crack tip does not significantly alter the crack tip field.

Determination of the constraint parameter A2

A point matching technique was used by Yang et al. [20,21] and Chao et al. [22] to

determined the value of A2.  The stress obtained by finite element analysis at a point (r, θ ) near

the crack tip is set equal to the three-term analytical solution (3) to solve for A2.  In particular,

these authors used rrσ  and θθσ  at )/(2 0σ= Jr , o0=θ  or o45 .  Chao and Zhu [23] also used this

approach to determine A2, but r is chosen from 0/ σJ  to )/(5 0σJ .
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To reduce the finite element mesh size sensitivity on the value of A2, Nikishkov et al. [27]

developed another technique, the least square procedure, for fitting the finite element data in the

region 1 50< <r J/ ( / )σ .  They found that A2 is almost independent of its location within the

region of interest.

A simple weight average technique is developed for the determination of A2.  It is assumed

that the resultant force due to the crack opening stress )0 ,(rθθσ  on the remaining ligament in the

region of 5)//(1 0 << σJr  has the same magnitude from a finite element result and from the

three-term solution (3).   Mathematically it is expressed as
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where )//( 0σ= Jrr  and FEA
θθσ  is the crack opening stress for points on the (r,θ)  = (r, 0) line

determined from finite element calculations. Upon integrating the above expression, the value of

A2 can be determined simply by solving the following second-order algebraic equation:
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The integration in (19c) can be determined approximately by numerical summation of FEA
θθσ )0,(r

on the finite element nodes in 51 << r .  Note that the weight averaging in (18) and (19)

determines the averaged value for A2 within the range 51 << r  along the (r, 0) line.  Other

ranges of r  for averaging A2 may be used.

J-A2 description of ductile crack growth

The two-parameter, J-A2 three-term solution has been successfully used to quantify the effect

of constraint for stationary crack-tip fields with various geometries and loading configurations

[20-22,26].  For a growing crack, similar to the concept of J-controlled crack growth, it is

assumed that that, within certain amount of crack extension, the J-A2 description can

approximately characterize the effect of geometry constraint on ductile crack growth with J

being the driving force and A2 the constraint parameter.  It is expected that the amount of J-A2

controlled crack growth is much larger than that of the J-controlled since the crack tip zone

dominated by the J-A2 is much larger than that controlled by J alone [23].

A procedure for transferring the J-R curve determined from a standard ASTM procedure to

that for a non-standard specimen or to a flawed structure is described in the following.  It is then

illustrated by using the test data (JIC and TR) of Joyce and Link [3].  A constraint based J-R curve

is established for the case of stable crack growth which is characterized by the parameter A2.
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General framework to construct constraint-modified J-R curves

The ASTM E 1737 specifies test procedures for the determination of fracture toughness as

characterized by the J-Integral under plane strain conditions.  Based on the amount of crack

extension, three toughness properties are identified as: (a) instability without significant prior

crack extension (JC); (b) onset of stable crack extension (JIC); (c) stable crack growth resistance

curve (J-R) in the region of J-controlled growth.  The present investigation is focused on the last

two fracture properties, (b) and (c).

It is specified in ASTM E 1737 that the fracture toughness JIC is defined as the value of J at

crack extension   (mm) 2.0
2

 +=∆=∆
F

IC
Q

J
aa

σ
or

(mm) 2.0
2

)()(
+=∆

∆=∆
F

IC
Q

J
aQIC aJaJ

σ
 (20)

where Fσ  is the flow stress or effective yield stress.  In addition, the J-resistance curve can be

approximated by a best-fit power-law relationship,

2

1)(
C

k

a
CaJ 






 ∆

=∆ (21)

where the coefficients 1C  and 2C are constants, and inch 1or    mm 1=k  depending on the unit of

a∆ .  Note that equation (21) assumes J = 0 at 0 a =∆ .

Since JIC corresponds to crack initiation, the constraint parameter A2 can be solved from

equation (18) by matching the three-term solution (3) to the finite element results at load level

JIC.  If the specimens are nonstandard, the corresponding value of A2 can be obtained in a similar

manner, as long as the JIC value is measured.
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As described earlier, under large scale yielding or near fully plastic deformation, the

constraint parameter A2 determined at ICJJ =  remains a constant for ICJJ ≥  in the case of a

stationary crack.  If the crack extension incurs and the location of the current crack tip is within

the J-A2 dominant region, the value of A2 is approximately invariant for the specific specimen.

Incorporating the constraint effect into the J-R curve, a curve of J versus crack extension a∆

under J-A2 controlled growth can be expressed as

)(

21202

22

)()(),(
AC

k

a
ACACAaJ 






 ∆

+=∆    (22)

The coefficients )( 20 AC , )( 21 AC , )( 22 AC  are unknown constants and depend upon the constraint

A2 at the crack tip for a specific material and specimen.   The coefficient C0(A2) is added to

include the fact that J is nonzero at zero crack extension (∆a).  That is, if the J value is known

prior to crack initiation, then

C0( A2 ) = J(∆a = 0, A2 ) ≡ J0(A2 ) (23)

Equation (22) extends the current ASTM J-resistance curve concept of )( aJ ∆  to a

constraint modified J-resistance curve ),( 2AaJ ∆ .  Once the functional forms of )( 20 AC , )( 21 AC

and )( 22 AC are known, the constraint modified J-resistance curve (or function), (22), is

completely determined.  The determination of )( 20 AC , )( 21 AC  and )( 22 AC is described in the

following steps:

Step 1: J-R curves are determined experimentally based on ASTM procedures, but for different

crack sizes or specimen types, as shown in Figure 2(a). The test specimens should be chosen to

include several low constraint to high constraint specimens.  As shown in Figure 2(a), each J-R
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curve has a constant A2 value, which is determined at the crack initiation load using finite

element results and equation (18).

Step 2: Using three points on each J-R curve as shown in Figure 2(a) the three coefficients

)( 20 AC , )( 21 AC  and )( 22 AC can be determined for each J-R curve or A2.  That is

3 2, 1,i          );(),( )( 202

)(

21

22

=−∆=
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ACAaJ
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AC ii

AC

i (24)
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aa , mmk 1=  and the International System of Units (SI) units are

used, one has
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2
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ACAJ
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J
AC IC

AC

F

IC −=







+

σ
(25)

Step 3: The step 2 is repeated for several J-R curves, see Figure 2(a).  Through curve fitting, the

functional forms of )( 20 AC , )( 21 AC  and )( 22 AC  are determined as shown in Figure 2(b).

Alternatively, these coefficients can be determined by the values of the initiation fracture

toughness JIC  and the corresponding tearing modulus RT .  Note that the current ASTM E 1737

specifies detailed procedures for the determination of JIC  ( J at  mm 
J

a a
F

IC
Q 2.0

2
+

σ
=∆=∆ ) and

da

dJE
TR 2

0σ
=  at 1=∆a  mm.  The fracture toughness at   a 0=∆ is often close to zero, as assumed

in (21).  The constraint modified J-R curve, equation (22), has therefore only two coefficients

)( 21 AC  and )( 22 AC for each curve or A2, which can then be determined by JIC and RT .  Using
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(22) and (25) with SI units, one obtains the following two equations to determine the unknown

coefficients C1 and C2:
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Note that both the initiation fracture toughness JIC and the tearing modulus 
da

dJE
TR 2

0σ
=  are now

functions of the constraint parameter A2.  Using the J-R curves obtained for several specimens of

various constraint levels, the functional relationship on the right hand sides of (26) can be

established as shown in Figures 3(a) and 3(b).  For a given A2 value (e.g. A2 from 0 to –1.0),

solving equation (26) gives the solutions for C1 and C2.  Consequently, the functional forms of

C1( A2 ) and C2(A2 ) are obtained by curve fitting as shown in Figure 3(c).

Once the constraint modified J-R curve, equation (22), is completely determined for a

material of interest, the J-R curves appropriate for any test specimen or for any structural

component can then be obtained, provided that the value of the constraint parameter A2 is known.

Experimental results of Joyce and Link (1997)

Following ASTM E 1737, Joyce and Link [3] tested a series of SENB specimens with a/W

ratios ranging from 0.13 to 0.83 for the HY80 steel.  The material properties1 are: 0.2% yield

                                                       
1 Joyce, J. A., Private communication, 1998.
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strength MPa 6100 =σ , ultimate strength MPaus  726=σ , Young’s modulus E = 199 GPa,

Poisson ratio 29.0=ν , and the strain hardening exponent 10=n .

The initiation fracture toughness JIC and the material tearing resistance TR  at 1=∆a mm,

obtained with ASTM E 1737 are presented by Joyce and Link [3] for all specimens and

reproduced in Table 1.  Because there is a simple relation between the Q-stress [18] and the A2

parameter, the A2 parameter in the current analysis was obtained by converting the Q-stress

reported by Joyce and Link [3].

Comparing (3) to the definition of Q, that is, HRRQ θθθθ σ−σ=σ0  at 0=θ  and 0/2 σ= Jr , the

relationship between Q and A2 is

( ) ( )
122

00

)2(

0

2
2

)2(

0
2 0~2

0~2
s

n

ss

LI

J
Q

L

J
A

L

J
A 








σαε

=σ







σ

+σ







σ θθθθ (27a)

For strain hardening exponent 10=n , the following constants were determined: 09091.01 −=s ,

06977.02 =s , 23044.03 =s , 53985.4=nI , 3130.0~ )2( =σθθ , and 4127.6)0(~ )3( −=σθθ .  Letting 1=α

and mmL  10= , (27a) becomes

  Q
J

A
J

A
J

09091.0
2
2

23044.0

2

06977.0
882.84

3050
4127.6

3050
313.0 






=






−








(27b)

Using (27b) and the Q-stresses which were reported by  Joyce and Link [3],  the A2 values were

determined and are listed in Table 1.
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Prediction of J-R curves using the J-A2 description

With the data given in Table 1 and following the procedures described earlier, a constraint-

modified J-R curve can be constructed.  Figures 4(a) and 4(b) show plots of JIC and TR versus A2,

respectively.  Note that the relationship of JIC and A2 can be fitted linearly by

JIC = - 119.79 A2 + 161.86    (kJ/m2) (28)

From Figure 4(a), it can be seen that JIC may be approximated by

JIC = 194    (kJ/m2
 ) (29)

In Figure 4(b), the relationship of TR and A2 is fitted by a straight line

TR = - 187.33 A2 + 36.425 (30)

or by a quadratic equation

TR = -164.77 A2
2 – 277.38 A2 + 25.717 (31)

Figure 4(b) shows that (30) and (31) are almost indistinguishable.  Therefore, the linear equation

(30) is used in this analysis.

Based on (30) and the definition of material tearing resistance 
mma

R a

JE
T

1
2
0 =∆∂

∂
σ

= , substitution

of material properties (E and σ0 ) yields the slope of the J-R curve at mm a 1=∆ :

109.6831.350 2
1

+−=
∂
∂

=∆

A
a

J

mma

      (N/mm2) (32)

J-R curves with JIC independent of constraint – The material flow stress of HY80 is 668

MPa and is defined as )(
2

1
0 usF σ+σ=σ .  Substituting (29) and (32) into (26) gives





+−=
=

109.6831.350

194)3452.0(

221

1
2

ACC

C C

(33)
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For a specific value of A2, the coefficients C1 and C2 can be solved from (33) with a non-

linear Newton iteration method.  Within the range 00.1 2 ≤≤− A , the values of C1 and C2 are

plotted in Figures 5(a) and 5(b), respectively.  They are expressed as

3182.05813.0)(

63.26435.226)(

222

221

+−=
+−=

AAC

AAC
(34)

By substituting (34) into (22), the constraint modified J-R curve for HY-80 steel is found to be

)3182.05813.0(

22

2

1
)63.26435.226()  ,(

+−







 ∆

+−=∆
A

mm

a
AAaJ (35)

J-R curves with JIC linearly related to constraint A2 - It is not uncommon that the fracture

toughness JIC is weakly dependent of the specimen geometry.   Therefore, equation (28) is used

to investigate the effect of JIC - A2 relationship on the J-R curves.  Following the same procedure

and by substituting (28) and (32) into (26), it can be shown that





+−=
+−=−

109.6831.350

86.16179.119)0897.03212.0(

221

221
2

ACC

AAC C

(36)

Solving (36) for a given value of A2, the coefficients C1 and C2 are obtained and are plotted in

Figures 6(a) and 6(b), respectively.  For 00.1 2 ≤≤− A , the expressions for C1 and C2 are,

respectively,

3551.04365.0)(

78.23715.323)(

222

221

+−=
+−=

AAC

AAC
(37)

Substituting (37) into (22), the constraint modified J-R curve for HY-80 steel is obtained:
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)3551.04365.0(

22

2

1
)78.23715.323()  ,(

+−







 ∆

+−=∆
A

mm

a
AAaJ (38)

Figure 7 shows the J-R curves predicted by (35), solid curves, and by (38), dashed curves,

for several A2 values (0.0, -0.168, -0.2, -0.3, and -0.4).  It indicates that the predicted J-R curves

are insensitive to the functional forms of JIC.  Therefore, JIC can be approximately considered as

a material constant and is independent of the level of constraint.  This agrees with the

experimental observations of Hancock et al.[1] and Joyce and Link [3].

Some experimental data of Joyce and Link [3] are also included in Figure 7.  The predicted

J-R curves (A2= -0.168 and -0.393) are compared with the test data of a shallow crack specimen

(a/W=0.13) and a deep crack specimen (a/W=0.55).  Note that the present analysis used only two

data points from each of the specimen of Joyce and Link, namely, JIC at mma 35.0≅∆  and TR  at

∆a =1 mm , and yet the predicted J-R curves match very well with the experimental data up to

mma 7=∆ .  Therefore, the J-A2 description can successfully predict the J-resistance curves even

considerable amount of crack growth has occurred.

Conclusions

To quantity the crack tip constraint effect on J-R curves in ductile crack growth, this paper

extends the concept of J-controlled crack growth to J-A2 controlled crack growth, in which the J-

integral represents the load level and the A2 parameter indicates the level of constraint.  The main

results are summarized as follows:

 (1) Under a fully plastic condition, it is proved by the deformation theory of plasticity

(Ilyushin [33]) that the constraint parameter A2 is independent of the applied load.  As a result,



19

the constraint parameter A2, determined at the crack initiation (JIC), remains invariant as long as

the growing crack tip is still within a J-A2 controlled regime.

(2) A simple weight average technique is developed to evaluate the value of A2 by matching

the finite element result with the three-term asymptotic solution [20-22].  The value of A2

determined in this manner is almost independent of the distance from the crack tip within

5)//(1 0 ≤σ≤ Jr , where the fracture event normally takes place.

(3) Using A2 as a constraint parameter, the concept of a constraint modified J-R curve is

proposed.  A procedure is outlined for transferring the J-R curves determined from the ASTM

standards to non-standard specimens or to structures with flaws.  Once the constraint parameter

A2 is determined, the J-R curve for any specimen can be readily predicted.

(4) The methodology of the constraint modified J-R curve has been applied to a set of SENB

test data obtained by Joyce and Link [3].  Using the initiation fracture toughness JIC and the

tearing modulus TR, the constraint modified J-R curves are constructed for the test material.  The

predicted J-R curves agree very well with the experimental data up to a crack extension of 7 mm.

Note that only two test data points (JIC and TR measured at mm 1<∆a ) were needed to

successfully construct the constraint modified J-R curve.  These results also indicate that (a) a

nearly linear relationship exists between the slope of the material J-resistance curve at 1 mm of

crack extension and the constraint parameter A2; and (b) the predicted J-R curves are insensitive

to the value of JIC which may be weakly dependent of the crack tip constraint.  Therefore, it can

be concluded that the initiation fracture toughness JIC may be regarded as a constant and is

independent of the crack tip constraint.  This was proposed earlier by Hancock et al. [1] and

Joyce and Link [3].
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TABLE 1 -- Fracture toughness and constraint quantities for all SENB specimens

_____________________________________________________________________________

Specimen I.D. a/W a/b (mm) JIC (KJ/m2) TR( mma 1=∆ ) Q A2

______________________________________________________________________________

94A 0.29 14.5/35.5 211.8 95.8 -0.36 -0.274

94B 0.26 13.0/37.0 225.6 99.1 -0.43 -0.299

94D 0.19 9.5/40.5 217.2 104.0 -0.60 -0.362

94E 0.39 19.5/30.5 216.0 77.9 -0.24 -0.217

94G 0.55 27.5/22.5 195.2 72.1 -0.15 -0.168

94H 0.55 27.5/22.5 169.2 71.1 -0.10 -0.134

94J 0.13 6.5/43.5 219.3 109.4 -0.70 -0.393

94K 0.14 7.0/43.0 215.1 117.4 -0.70 -0.394

94K 0.14 7.0/43.0 183.0 100.0 -0.67 -0.395

94J 0.13 6.5/43.5 196.5 108.7 -0.68 -0.394

FYB507 0.61 30.5/19.5 189.5 55.0 -0.10 -0.132

95H 0.83 41.5/8.5 162.9 73.7 -0.25 -0.232

95G 0.78 49.0/11.0 145.6 78.7 -0.22 -0.220

95X 0.70 45.0/15.0 172.6 56.1 -0.15 -0.171

______________________________________________________________________________
Note: the specimen length l = 203mm,  l/W = 4,  B/W = 0.5;  W = 50.mm,  B = 25mm.  Side

groove 20%.
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Figure Captions

FIG. 1 – Schematic Regimes for J and J-A2 Controlled Crack Growth.

FIG. 2-- Analysis procedure for constructing the constraint-modified J-R curves, equation (24).

 (a) Experimental J-R curves from various specimens

 (b) Determination of the functional relationship )( 20 AC , )( 21 AC , )( 22 AC

FIG. 3 -- Analysis procedure for constructing the constraint-modified J-R curves, equation (26).

(a) Determination of the functional relationship between JIC and A2

(b) Determination of the functional relationship between TR and A2

(c) Determination of the functional relationship )( 21 AC , )( 22 AC

FIG. 4 -- Experimental data and fitted curves for SENB specimens. Data points are from Joyce

and Link (1997), and the lines are the best-fit curves.

(a) Initiation toughness JIC versus A2

(b) Tearing toughness TR versus A2

FIG. 5 -- Fitted curves for parameters in constraint-modified J-R curves with JIC = 194 KJ/m2

(the dots are calculated from equation (33); the lines are the best-fit curves).

(a) Variation of C1 versus A2;  (b) Variation of C2 versus A2

FIG. 6 -- Fitted curves for parameters in constraint-modified J-R curves with

JIC = -119.79 A2 +161.86 (KJ/m2)

(the dots are calculated from equation (36); the lines are the best-fit curves).

(a) Variation of C1 versus A2;  (b) Variation of C2 versus A2

FIG. 7 -- Comparisons of predicted J-R curves (Equations 35 and 38) and SENB J-R curves of

Joyce and Link (1997).
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Figure 1 – Schematic Regimes for J and J-A2 Controlled Crack Growth.

Figure 2-- Analysis procedure for constructing the constraint-modified J-R curves, equation (24).
(a) Experimental J-R curves from various specimens
(b) Determination of the functional relationship )( 20 AC , )( 21 AC , )( 22 AC
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Figure 3 -- Analysis procedure for constructing the constraint modified J-R curves,
equation (26).
(a) Determination of the functional relationship between JIC and A2

(b) Determination of the functional relationship between TR and A2

(c) Determination of the functional relationship )( 21 AC , )( 22 AC

Figure 4 -- Experimental data and fitted curves for SENB specimens. Data points are from Joyce
and Link (1997), and the lines are the best-fit curves.
(a) Initiation toughness JIC versus A2

(b)Tearing toughness TR versus A2
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Figure 5 -- Fitted curves for parameters in constraint-modified J-R curves with JIC = 194 KJ/m2

(The dots are calculated from equation (33);  the lines are the best-fit curves).
(a) Variation of C1 versus A2; (b) Variation of C2 versus A2

Figure 6 -- Fitted curves for parameters in constraint-modified J-R curves with
JIC = -119.79 A2 +161.86 (KJ/m2)
(The dots are calculated from equation (36); the lines are the best-fit curves).
(b) Variation of C1 versus A2 (b) Variation of C2 versus A2
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